

Edexcel Chemistry A-Level Core Practical 04 - Rates of hydrolysis of halogenoalkanes

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is a hydrolysis reaction?

What is a hydrolysis reaction?

Hydrolysis is a type reaction where water is used to break (hydrolyse) chemical bonds and split a reactant into two.

How do you test the rate of hydrolysis of different haloalkanes? (chloro-, bromo-, iodo-)

How do you test the rate of hydrolysis of different haloalkanes? (chloro-, bromo-, iodo-)

- In 3 different test tubes add 4 drops of 1-chlorobutane, 1-bromobutane and 1-iodobutane.
- To each test tube add 5 cm³ of ethanol. Place all test tubes in a 50°C water bath.
- Pour about 5 cm³ of silver nitrate into 3 test tubes. Place the test tubes in the water bath.
- When all the solutions have reached 50°C, add the silver nitrate to the haloalkane–ethanol solutions.
- Start the stop clock. Measure the time taken for each precipitate to appear.

What are the expected results of these reactions?

What are the expected results of these reactions?

Haloalkane	Result
1-chlorobutane	White precipitate forms slowly.
1-bromobutane	Cream precipitate forms faster than that of 1-chlorobutane but slower than 1-iodobutane.
1-iodobutane	Yellow precipitate forms very quickly.

How do you test the rate of hydrolysis of different haloalkanes? (primary, secondary, tertiary)

How do you test the rate of hydrolysis of different haloalkanes? (primary, secondary, tertiary)

- In 3 different test tubes add 4 drops of 1-bromobutane, 2-bromobutane and 2-bromo-2-methylpropane.
- To each test tube add 5 cm³ of ethanol. Place all test tubes in a 50°C water bath.
- Pour about 5 cm³ of silver nitrate into 3 test tubes. Place the test tubes in the water bath.
- When all the solutions have reached 50°C, add the silver nitrate solution to the haloalkane–ethanol solutions.
- Start the stop clock. Measure the time taken for each precipitate to appear.

What are the expected results of these reactions?

What are the expected results of these reactions?

Haloalkane	Result
1-bromobutane	Slow formation of cream precipitate.
2-bromobutane	Medium formation of cream precipitate.
2-bromo-2-methylpropane	Fast formation of cream precipitate.

What kind of reaction is the hydrolysis of haloalkanes?

What kind of reaction is the hydrolysis of haloalkanes?

Nucleophilic substitution

Why are water baths used?

Why are water baths used?

To keep the temperature constant (as temperature is a control variable) so it doesn't interfere with the rate of hydrolysis.

What is an uncertainty?

What is uncertainty?

The uncertainty in a measurement is the interval within which the true / actual value is expected to lie.

What is percentage uncertainty and how do you calculate it?

What is percentage uncertainty and how do you calculate it?

Percentage uncertainty in a measurement =

How can you decrease the uncertainty in time taken?

How can you decrease the uncertainty in time taken?

Use a lower temperature to reduce the rate of reaction. This will make the time taken longer and so the percentage uncertainty will be lower.

